
 

1 [Determination of Potential Impact Radius for CO2 Pipelines using Machine Learning Approach] 

CAAP Quarterly Report 

October 4, 2023 

 

Project Name: Determination of Potential Impact Radius for CO2 Pipelines using Machine 

Learning Approach 

Contract Number: 693JK32250011CAAP 

Prime University: Texas A&M University 

Prepared By: Sam Wang, qwang@tamu.edu, 979-845-9803  

Reporting Period: 6/27/2023 – 9/26/2023 

 

Project Activities for Reporting Period: 

The following relevant tasks in the proposal have been completed: 

 Published a review paper for CO2 pipelines dispersion:  

C. Li, J.A.D. Marquez, P. Hu, Q. Wang, CO2 pipelines release and dispersion: A review. 

Journal of Loss Prevention in the Process Industries 2023, 85, 105177. 

 Adjusted the procedure for the simulation and validated the results against full-scale CO2 

release experiments, CO2PIPETRANS JIP project. More details are provided in the 

Appendix. 

 Conducted simulations on two cases in practices. More details are provided in the 

Appendix. 

 Held a meeting with technical panel and collected the recommendations for further study. 

More details are provided in the Appendix.  
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Project Financial Activities Incurred during the Reporting Period: 

Based on the proposed budget, the cost is broken down into two parts: 

 Efforts from the PI Dr. Wang for about 0.25 month. 

 Efforts and work by graduate students, Chi-Yang Li and Jazmine Aiya D. Marquez, 

totally for about 3 months for each of them. 

 

Project Activities with Cost Share Partners: 

Dr. Wang’s time and efforts (0.25 month) in this quarterly period are used as cost share. He 

devoted his time to supervise the graduate students, review all work, and prepare the progress 

report. 

 

 

Project Activities with External Partners: 

I continue the discussions with Denbury regarding the extension of project on the validation 

study. 

 

Potential Project Risks: 

For the future parametric study using Ansys Fluent, incorporating terrain information has 

increased the computation time. We anticipate that performing hundreds of CFD simulations in 

the future will require a significant amount of time, much higher than we expected. One PhD 

student graduated and a new PhD joined the project. These factors cause some delays and we 

will require more time to finish this project. Although I have assigned two PhD students to work 

on this project to accelerate the project, a no-cost extension of this project is needed.  

 

Future Project Work: 

Perform parametric studies at TAMU HPRC for all dispersion scenarios by using Ansys Fluent 

with the numeric simulation setup mentioned above. For other parameters of concern, besides the 

5 categories of terrains, the variables for pipeline characteristics and weather conditions are as   
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 Table 1 (updated after recommendations from technical panel). 
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Table 1. The variables for pipeline characteristics and weather conditions. 

 Variable High Medium Low 

Pipeline characteristics 

pressure (MPa) 20 10 1 

diameter (inch) 30 16 4 

flow rate (MMcfd) 1300 590 30 

Weather conditions 

wind speed (mph) 25 12 1 

temperature (°F) 100 60 0 

 

 Create the database for the PIR for CO2 pipelines dispersion based on the simulation 

results with the setup above. 

 

Potential Impacts to Pipeline Safety: 

 The variables for pipeline characteristics and weather conditions cover the upper limits 

and lower limits of the current industrial practices; therefore, the machine learning model 

is believed to have accurate predictions for other pipelines in the range. 
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Appendix 

 

1. CFD Modeling Discussion 

According to the process of collecting for the review, separating the simulation scope to near-

field stage and far-field stage is the widely used method on simulating the dispersion behavior 

from high pressure CO2 pipelines (Figure 1). In near-field stage, we analyze the depressurization 

behavior from the pipe, while in far-field, we obtain the dispersion result in far-field stage. 

 

Figure 1. Near-field and far-field. 

In the near-field stage, the pressure drops rapidly, while temperature reduces accordingly, and 

velocity increases promptly. Thus, the behavior in the near-field stage is complicated. In Ansys 

Fluent, as the Mach number exceed 0.3, the density-based solver (rather than pressure-based 

solver) is recommended to use. Therefore, we used the density-based solver for the near-field 

stage, and pressure-based solver for far-field stage. Furthermore, we applied very fine mesh to 

make sure the simulation could work and utilized 2-D axisymmetric model to simplify the 

calculation. Therefore, the geometry and mesh of the BP test 8 (15.74 MPa and 420.3 K) from 

CO2PIPETRANS JIP project is as Figure 2, and simulation results is as Figure 3. 

 

Figure 2. Geometry and mesh of BP test.  
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Figure 3. Simulation results. 

From Figure 3, we could observe the Mach disc, which manifests as a notable characteristic 

within specific shock wave occurrences, especially within the realm of swift supersonic or 

hypersonic flows (Figure 4). Moreover, we also could get the accurate mass flow rate from this 

simulation, whose observed value was 4.07 kg/s (Figure 5).  

 

Figure 4. Mach disc (adopted from Liu et al., 2014). 

 

Figure 5. Mass flow rate from the near-field simulation. 

However, the near-field stage for this relatively simple BP test 8 case took TAMU HPRC a day 

to run the simulation, not to mention the CO2 pipelines with higher pressure and temperature. 

Therefore, it would take too much time to create the database for our further machine learning 

step, so we need to adjust the procedure on predicting the near-field stage.  
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Thus, we used the conservation equation of energy to do the calculation for near-field stage: 

∆𝐻 + ∆𝐾𝐸 + ∆𝑃𝐸 = 𝑄 +𝑊𝑠 

Where, H is enthalpy, KE is kinetic energy, PE is potential energy, Q is heat, and 𝑊𝑠 is 

shaft work. 

In the near-field stage, there is some fraction of CO2 would disperse to atmosphere, while some 

air entrains and mixes with CO2. According to the simulation from Ansys Fluent, 3.8 kg/s (out of 

total 4.07 kg/s CO2 from the pipe) CO2 blended with air and accounted for 28.22 %. The initial 

state (420.3 K and 15.74MPa) is the CO2 in the pipe and the final state (281 K and 96020 Pa) is 

the mixture of CO2 and air at the 10 times of the distance of Mach disc (xm) from the pipe, which 

is believed the pressure and temperature from the pipe is reduced to ambient temperature and 

ambient pressure. In this case, the corresponding distance is 1 meter.  

(𝑚𝑎𝐻𝑎,𝑖 +𝑚𝑐𝐻𝑐,𝑖 −𝑚𝑎𝐻𝑎,𝑓 −𝑚𝑐𝐻𝑐,𝑓) + (
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2 −
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2) + 0

= 𝑄 +𝑊𝑠 

𝜌𝑚𝑖𝑥 =
𝑃𝑀𝑚𝑖𝑥

𝑅𝑇
 

𝐴𝑓 =
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𝑥𝑚 = 0.6455 × 𝑑𝑒 ×√
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Where 𝑚𝑎 is the mass flow of air, 𝑚𝑐 is the mass flow of CO2, 𝐻𝑎,𝑖 is the enthalpy of air 

in initial state, 𝐻𝑐,𝑖 is the enthalpy of CO2 in initial state, 𝐻𝑎,𝑓 is the enthalpy of air in 

final state, 𝐻𝑐,𝑓 is the enthalpy of CO2 in final state, 𝑣𝑎,𝑖 is the velocity of air in initial 

state, 𝑣𝑐,𝑖 is the velocity of CO2 in initial state, 𝑣𝑓 is the velocity of the mixture in final 

state, 𝜌𝑚𝑖𝑥 is the density of mixture, P is the pressure, 𝑀𝑚𝑖𝑥 is the molecular weight of 

mixture, R is the gas constant, T is the temperature, 𝐴𝑓 is the input area for far-field 

statge, 𝑥𝑚 is the distance of the Mach disc, 𝑑𝑒 is the diameter of the nozzle exit, 𝑃0 is the 

stagnation pressure, and 𝑃∞ is the ambient pressure. 
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For the 𝑊𝑠, Joule-Tompson coefficient (𝜇𝐽𝑇) and Peng-Robinson equation of state applied to 

escaped CO2 to calculate the shaft work on the surrounding based on isothermal expansion. 

𝑃 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎𝛼

𝑉𝑚
2 + 2𝑏𝑉𝑚 − 𝑏2

 

𝑎 =
0.45724𝑅2𝑇𝑐

2

𝑃𝑐
 

𝑏 =
0.07789𝑅𝑇𝑐

𝑃𝑐
 

𝛼 = (1 + (0.37464 + 1.54226𝜔 − 0.26992𝜔2)(1 − 𝑇𝑟
0.5)) 

𝑇𝑟 =
𝑇

𝑇𝑐
 

𝜇𝐽𝑇 = (
𝜕𝑇

𝜕𝑃
)
𝐻

 

𝑊𝑠 = ∆(𝑃 ×𝑚𝑐,𝑒 × 𝑉𝑚) 

Where 𝑚𝑐,𝑒 is the mass flow of escaped CO2, and 𝑉𝑚 is the specific volume of the CO2 at 

corresponding conditions with considering Joule-Tompson coefficient (𝜇𝐽𝑇) and Peng-

Robinson equation of state. 

Therefore, we could calculate the temperature, specific volume of CO2, and through the 

depressurization process. Consequently, we could calculate the shaft work on surrounding. 

 

Figure 6. Shaft work of escaped CO2. 

Additionally, there is some heat loss from the dispersion. For this case, CO2 will be passing 

through three sections before it can be released into the atmosphere. From the storage tank, it 

will traverse a flexible hose, a metering spool, and an orifice plate (Table 2).   
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Table 2. The properties of the material. 

Transport path Material 
Length 

(m) 

Inner 

radius 

(in) 

Outer 

radius 

(in) 

Thermal 

conductivity 

(W/m·K) 

Flexible hose 
Hydrogenated Nitrile 

Butadiene Rubber (HNBR) 
3 2 1.25 0.23 

Metering spool 

(pipe) 
Steel 2 0.5 0.42 45 

Orifice plate Stainless Steel 0.5 0.5 2.2 15 

 

These transport paths were based on common materials used for CO2 transportation. To account 

for the heat lost from transport between the storage tank and the orifice, the heat generated by the 

fluid through each of the materials was calculated using the following equation: 

𝑄 =
2𝜋𝑘𝐿(𝑇𝑖 − 𝑇𝑜)

ln (
𝑟𝑜
𝑟𝑖
)

 

Where, k is the thermal conductivity; L is the length of the pipe; Ti is the temperature inside 

the pipe; To is the temperature outside the pipe; ro is the outer radius of the pipe; and ri is 

the inner radius of the pipe. Hence, the heat loss from CO2 transport can be summed as: 

𝑄 = 𝑄𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐻𝑜𝑠𝑒 + 𝑄𝑀𝑒𝑡𝑒𝑟𝑖𝑛𝑔𝑆𝑝𝑜𝑜𝑙 + 𝑄𝑂𝑟𝑖𝑓𝑖𝑐𝑒𝑃𝑙𝑎𝑡𝑒 

 

With the equations mentioned above, we could get the velocity, composition of CO2, and area 

from the near-field stage (Table 3). Thus, we could use them in the far field to simulate the 

dispersion behavior. 

Table 3. Parameters obtained from near-field stage. 

Parameter Value 

Mass fraction (%) 28.22 

Velocity (m/s) 21.33 

Area (m2) 0.46 
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For the far-field stage, the geometry and mesh, composed of 192,627 nodes and 1,059,276 

elements, for the scope is as Figure 7. The CO2 concentration contours is shown in Figure 8. The 

CO2 concentration along the downstream is as Figure 9. The comparison of experimental results 

and current simulation results is shown in Table 4. 

 

Figure 7. Geometry and mesh for the scope of simulation. 

 

Figure 8. CO2 concentration contours. 
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Figure 9. The CO2 concentration along the downstream for BP test 8. 

 

Table 4. The comparison of CO2 concentrations between experiments and simulations. 

Downstream distance 

from source (m) 

Highest molar fraction (%) 

Experiment Simulation 

5 8.22% 8.69% 

10 3.36% 3.52% 

20 1.85% 1.61% 

40 1.49% 0.70% 

 

2. Case studies on real cases 

Two case studies (Table 5) have been conducted based on the above-mentioned method, 

which is the combination of calculation on near-field and CFD simulation on far-field. 

Table 5. Parameters for two case studies. 

 Variable Case 1 Case 2 

Pipeline characteristics 

pressure (MPa) 20 20 

diameter (inch) 4 30 

flow rate (MMcfd) 30 1300 

Weather conditions 

wind speed (mph) 1 1 

temperature (°F) 60 60 
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The CO2 concentration along the downstream and the distance for CO2 concentration at 1%, 4%, 

and 9% are as Figure 10, Figure 11, and   
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Table 1. 

 

Figure 10. The CO2 concentration along the downstream for Case 1. 

 

Figure 11. The CO2 concentration along the downstream for Case 2. 

 

Table 6. The distance for CO2 concentration at 1%, 4%, and 9%. 

Concentration 1% 4% 9% 

Case 1 210 10 6 

Case 2 1810 450 155 
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3. To-do list after technical panel meeting (Sep 27, 2023) 

A. Check the influence of the roughness of ground. 

B. Check the influence of the temperature in pipelines. 

 


